A clone-theoretic formulation of the Erdös-Faber-Lovász conjecture
نویسندگان
چکیده
The Erdős–Faber–Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
منابع مشابه
On the Linear Intersection Number of Graphs
The celebrated Erdös, Faber and Lovász Conjecture may be stated as follows: Any linear hypergraph on v points has chromatic index at most v. We will introduce the linear intersection number of a graph, and use this number to give an alternative formulation of the Erdös, Faber, Lovász conjecture. Finally, first results about the linear intersection number will be proved. For example, the definit...
متن کاملFractional aspects of the Erdös-Faber-Lovász Conjecture
The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lo...
متن کاملOn the Erdös-Gyárfás conjecture in claw-free graphs
The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs.
متن کاملA semidefinite programming-based heuristic for graph coloring
The Lovász θ-function is a well-known polynomial lower bound on the chromatic number. Any near optimal solution of its semidefinite programming formulation carries valuable information on how to color the graph. A self-contained presentation of the role of this formulation in obtaining heuristics for the graph coloring problem is presented.
متن کاملOn a conjecture of Erdös, Graham and Spencer, II
It is conjectured by Erdős, Graham and Spencer that if 1 ≤ a1 ≤ a2 ≤ · · · ≤ as are integers with ∑s i=1 1/ai < n − 1/30, then this sum can be decomposed into n parts so that all partial sums are ≤ 1. This is not true for ∑s i=1 1/ai = n − 1/30 as shown by a1 = · · · = an−2 = 1, an−1 = 2, an = an+1 = 3, an+2 = · · · = an+5 = 5. In 1997 Sandor proved that Erdős–Graham–Spencer conjecture is true ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 24 شماره
صفحات -
تاریخ انتشار 2004